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A UNIFYING FRAMEWORK OF

HOT SPOTS FOR ENERGETIC MATERIALS

K� Yano� Y� Horie� and D� Greening

Los Alamos National Laboratory�
Los Alamos� NM ������ USA

ABSTRACT

A one dimensional model of hot�spots is proposed to consider various regimes of ignition scenar�
ios using a common platform� The model contains the most advanced features of spherical void
collapse models� They include� viscoplastic heating� phase change� gas phase heating� 	nite�rate
chemical reactions� and heat transfer between the locally heated zone and the surrounding mass�
Test calculations� based so far on cyclonite 
RDX� data� show that the model behavior is compa�
rable to that of spherical void collapse model under shock loading condition� Results also show
that chemical initiation under various mechanical excitation as well as thermal heating can be
understood in a uni	ed fashion� the initiation thresholds are summarized in terms of total energy
deposited to the hot�spot� size of the hot�spot� and the rate of the energy deposition�
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INTRODUCTION

The concept of 
hot�spot� or the region of high energy localization was introduced by Bowden
and Yo�e 
����� to explain the ignition of explosive materials when the mean 	eld conditions are
inadequate� For solid explosives� various mechanisms have been proposed for hot�spot formation�
such as pore collapse� shear banding� friction� fracture� and jetting 
Davis ����� Dienes ����� Kang
et al�� ����� Massoni et al�� ������

Currently much is unknown about how the formation of hot�spot is related to the initial ma�
terial state and loading conditions� As a result� modeling of hot�spot formation involves a priori
choice of a mechanism� which typically involves a model geometry that may not be representa�
tive of actual hot�spot geometry� But at present� there is no incontrovertible evidence to prefer



one mechanism over the others� In addition� single�mechanism approach can be problematic for
complex systems like polymer�binder explosives 
PBX��

Nevertheless� if one examines various models setting aside the mechanisms� a unifying frame�
work can be identi	ed� The framework consists of� 
�� a region where mechanical energy is highly
localized� 
�� thermal mass surrounding the region described in 
��� 
�� creation or existence of the
region occupied by gas� 
�� heat �ow between the regions� and 
�� reaction chemistry in the gas�
at the solid�gas interface� or both� In the present investigation� a hot�spot model was developed
using the framework described above without being speci	c about the hot�spot formation mech�
anisms� Rather� attention is focused on whether the model yields results that are consistent with
other mechanistic models by ranging over the parameter space� and how the model parameters
a�ect the ignition conditions�

HOT�SPOT MODEL

Figure � shows an idealized model of hot�spot based on the unifying framework� The model
is one dimensional and consists of three components� solid with a region of localized heating�
gas cavity� and solid�gas interface� The solid is assumed to be incompressible� Thus� the solid
moves with a common particle velocity� and the motion is determined by the balance of external
loads� gas pressure� and con	gurational stress which represents the e�ect of contact force that
may develop at the interface� The temperature is determined by the analytic solution of heat
conduction equation for a 	xed length domain� The heat is added uniformly to the zone of energy
localization� It is noted that the width of the zone � 
�b�a� and the rate of volumetric heating �s

are free parameters� at present� In this way� the question of coupling between energy localization
and the state of material is set aside for the moment�

The gas equations are obtained based on the assumption that average behavior is adequate for
the present purpose� Reaction chemistry is assumed to be single step described by the Arrhenius
kinetics model with pressure dependency� The equation of state is prescribed by a modi	ed form
of the ideal gas equation of state� Heat conduction between the gas phase and the interface is also
considered�

At the interface� conservation conditions of mass� momentum� and energy are imposed� It is
assumed that the interface is in	nitely thin� Because of localized heating in the solid phase� a
mass �ux is produced at the interface as a function of the interface temperature� Part of the �ux
may go through instantaneous chemical reaction� Depending of the modeling needs� the localized
heating can be generated at the interface with a known surface heating rate �s�i�
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FIGURE �� A schematic of the model structure� It consists of gas cavity� solid�gas interface� and solid with

a zone of localized heating� Thick arrows represent stresses acting on the solid�



Mathematically� the model system consists of � ordinary di�erential equations and �� alge�
braic equations� The di�erential equations were numerically integrated by Runge�Kutta scheme�
The model contains all the features found in spherical pore collapse model by Kang et al� 
������
Major di�erence is that in their model� the energy localization is coupled with the model geometry
whereas it is prescribed by free parameters in the present model� Details of the model are found
in Yano et al� 
������

MODEL SIMULATIONS

RDX was chosen for model simulations in order to compare the results with those of spherical
void collapse calculation by Kang et al� 
������ Three sets of simulation results are presented in
this section� The 	rst two are results of ignition simulations with high and low heating rate� The
last result presents a parametric study of critical ignition condition for RDX�

Figure � is a schematic of the conditions for ignition simulation where the rate of heating is
high� The heating rate is indicative of the energy dissipation rate produced by spherical pore
collapse under shock loading 
Kang et al�� ����� Bonnet and Butler� ����� Massoni et al� ������
The magnitude of applied load and physical dimensions are from Kang et al� 
������ Figure �

a� and 
b� show the results of the ignition simulation� At time t � �� � GPa of external load
is applied and the gas pore starts to collapse� At the same time� heat addition is started to the
heating zone� The temperatures of the interface and the gas phase rise steadily� At ���� �s� the
heat addition is terminated� The interface temperature starts to drop due to the termination�
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FIGURE �� Conditions for ignition simulation with high rate of heating� The heating rate is indicative of

energy dissipation rate of spherical pore collapse under shock loading condition�
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FIGURE �� Results of ignition simulation for conditions shown in Fig� �� �a� Time evolution of temperatures at

the interface �thick dashed line� and in the gas phase �thick solid line�� Thin dash�dotted line is the time evolution

of reactant mass fraction in the gas phase� �b� Pressure evolution in the gas phase�



whereas the gas phase temperature keeps on rising because of exothermic chemical reaction in
the gas phase� At about ���� �s� ignition takes place and both gas temperature and pressure rise
in almost discontinuous manner� After the ignition� the gas pressure rapidly drops due to the
expansion of the gas� Qualitatively and quantitatively� the ignition behaviors are very similar to
those presented by Kang et al� 
������

The conditions for the second simulation are shown in Fig� �� In this simulation� the heat is
added to the interface� and the heating rate is an estimate of frictional energy dissipation caused
by low speed 
� �� m�s� impact� Figure � 
a� and 
b� show the simulation results� The heat
addition is maintained during � � t � ���� ms for this calculation� Qualitatively� the results
are similar to those of previous simulation� except the time scale for ignition is on the order of
sub�millisecond� A plateau appeared in the pressure pro	le� because the gas pressure reached the
external loading pressure� and the gas started to expand slowly� The plateau is not seen for higher
external pressures�

Finally� the third results presents critical conditions for ignition� The idea of critical energy
input is often pursued as a parameter to describe ignition conditions� One good example is the
p�� criterion for explosives under impact loading where p is the shock pressure and � is the time
duration of the pressure 
Walker������� Lee 
������ however� pointed out that the concept of
critical energy alone is not su�cient to explain various ignition scenarios and that time factor over
which the energy stimulus takes place must be considered� In this simulation� the critical energy
deposited to the heating zone was calculated as a function of the size of heating zone and the rate
of heating�
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FIGURE �� Conditions for ignition simulation with low rate of heating� The heating rate is comparable� in

estimate� to frictional energy dissipation caused by low velocity impact�
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FIGURE �� Results of ignition simulation for conditions shown in Fig� �� �a� Time evolution of temperatures at

the interface �thick dashed line� and in the gas phase �thick solid line�� Thin dash�dotted line is the time evolution

of reactant mass fraction in the gas phase� �b� Pressure evolution in the gas phase�



Figure � shows the results of parametric study� The symbols represent the points of critical
conditions� For a given heating zone size and a heating rate� any energy above each symbol leads
to ignition� and any energy below does not lead to ignition� The pro	les are characterized by the
existence of minima and convergence for large �� In the left branch of the minimum point� less
energy is required as � gets larger� This is because heat loss at the interface due to conduction
becomes smaller as the size of hot spot increases� On the other hand� in the right branch more
energy is required for larger � simply because of the volume increase� The curve approaches to
linear pro	le for large values of � as the e�ect of thermal conduction becomes negligible� The
convergence behavior for large � indicates that the ignition occurs once the interface temperature
reaches the critical value 
thermal ignition��

Three curves in Fig� � were obtained by curve 	tting with the following 	tting function�

Ecr � E
�
� k

�
��� exp
���s���� �

C�


�s��n
exp
�C��s�� 
��

where Ecr is the critical energy and E�� k�� �� C�� C�� and n are 	tting parameters� Values of
the parameters used for the 	tting are listed in Table ��

Heating zone, δ (µm)

C
ri

tic
al

en
er

gy
(J

)

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

φs= 3.3×1014

3.3×1015
3.3×1014

φs (W/m3)

3.3×1016φs= 3.3×1016

φs= 3.3×1015

FIGURE �� Critical condition for ignition in terms of total energy deposited to the heating zone as a function

of the size of heating zone and heating rate� The symbols represent data obtained from parametric study� and the

curves are the result of �tting using Eq��	��

TABLE �
VALUES OF PARAMETERS IN EQ��	� USED FOR CURVE FITTING

variable 
units� value
E
�

J� ���

k� 
J�m� ���������

� 
��W� ����������

n 
�� ���
C� 
J�W n� ���������

C� 
��W� ����������



CONCLUSIONS

An idealized model based on the uni	ed framework described here produced ignition behaviors
that are in general agreement with those of mechanism�speci	c models 
Kang et al� ����� Massoni
et al� ������ This agreement is seen over wide range of the parameter space� showing a consistent
variation of time to ignition over orders of magnitude� depending on energy deposition rate and
its duration� Further� a parametric study of critical ignition conditions shows results consistent
to the observation by Field et al� 
����� on e�ective hot�spot ignition 
hot�spot size� ��� � �� �m
and duration of heating� ���� � ���� s�� The results also show that critical ignition conditions
are summarized in terms of total energy deposited to the hot�spot� the size of the hot�spot� and
the rate of energy deposition�
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